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Variability is an important but neglected aspect of connectional neuroanatomy. The quantitative density
of the `same’ corticocortical or thalamocortical connection may vary by over two orders of magnitude
between di¡erent injections of the same tracer. At present, however, the frequency distribution of
connection densities is unknown. Therefore, it is unclear what kind of sampling strategies or statistical
methods are appropriate for quantitative studies of connectivity. Nor is it clear if the measured variability
represents di¡erences between subjects, or if it is simply a consequence of intra-individual di¡erences
resulting from experimental technique and the exact placement of tracers relative to local spatial and
laminar variation in connectivity.

We used quantitative measurements of the density of a large number of corticocortical and thalamo-
cortical connections from our own laboratories and from the literature. Variability in the density of given
corticocortical and thalamocortical connections is high, with the standard deviation of density propor-
tional to the mean. The frequency distribution is close to exponential. Therefore, analysis methods relying
on the normal distribution are not appropriate. We provide an appendix that gives simple statistical
guidance for samples drawn from exponentially distributed data.

For a given corticocortical or thalamocortical connection density, between-individual standard
deviation is 0.85 to 1.25 times the within-individual standard deviation. Therefore, much of the variability
reported in conventional neuroanatomical studies (with one tracer deposited per animal) is due to
within-individual factors. We also ¢nd that strong, but not weak, corticocortical connections are substan-
tially more variable than thalamocortical connections. We propose that the near exponential distribution
of connection densities is a simple consequence of `patchy’ connectivity. We anticipate that connection
data will be well described by the negative binomial, a class of distribution that applies to events occur-
ring in clumped or patchy substrates. Local patchiness may be a feature of all corticocortical connections
and could explain why strong corticocortical connections are more variable than strong thalamocortical
connections. This idea is supported by the columnar patterns of many corticocortical but few thalamo-
cortical connections in the literature.
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1. INTRODUCTION

Over the past 100 years, neuroanatomists have exerted a
great deal of energy to trace the neural pathways that
link di¡erent regions of the brain. This work has been
motivated by the belief that an understanding of the
connectional structure of the brain will lead to a better
understanding of brain function (Meynert 1890). The
past century has seen great advances in methods for
tracing connections (e.g. Marchi & Algeri 1895; Nauta
& Gygax 1954; Kristensson et al. 1971; Cowan et al. 1972;
Gerfen & Sawchenko 1984) and in the application of
these methods to the thalamus and cortex in several
species (Le Gros Clark 1932, 1942; Rose & Woolsey
1948; Polyak 1927, 1933). These advances have resulted in

an explosion in our knowledge of brain connectivity (e.g.
Zeki & Shipp 1988; Felleman & Van Essen 1991; Young
1993; Scannell et al. 1995; Pandya & Yeterian 1985), but
have contributed very little to our knowledge of the
magnitude of, and variability in, individual brain
connections. This is because quanti¢cation remains
particularly laborious (but see Olson & Musil 1992;
Musil & Olson 1988a,b, 1991; MacNeil et al. 1997;
Hilgetag & Grant, this issue). Therefore, the vast
majority of corticocortical and thalamocortical connec-
tion tracing studies still use a small number of indivi-
duals and report qualitative, rather than quantitative,
measures of connection density.

Recently, MacNeil et al. (1997) published quantitative
data on the strengths of cortical and thalamic projections
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to the middle suprasylvian (MS) visual cortical area in
the cat. This study used several di¡erent tracers, but was
very careful to minimize variability in the areal extent of
the tracer deposit. MacNeil et al. (1997) included only
cases where the tracer was con¢ned to a particular reti-
notopic region of MS cortex, where the tracer reached all
cortical layers (but not the white matter), where the
tracer deposit was a reasonable size and where the white
matter was not damaged by the injection. Their data
show a low level of variability in the strength of indivi-
dual thalamocortical connections, but a very high degree
of variability in the strength of individual corticocortical
connections.

The work of MacNeil et al. (1997) inspired us to pool
quantitative connection data from our laboratories with
published studies to investigate variability more system-
atically. This e¡ort is important because variability has
at least four serious implications. First, the degree and
nature of variability have practical consequences for
experimental design in neuroanatomical studies and for
the way that results are reported. Most single studies
use small samples from which it is impossible to make a
reasonable estimate of the distribution from which the
sample came. However, any form of statistical inference,
even one as simple as calculating the standard
deviation, has to make assumptions about the likely
distribution of the data. By pooling data from a number
of studies we can obtain a reasonable picture of this
distribution, that can then be àssumed’ by other
researchers. If our pooled data show that variability is
high, then sample size and random sampling error
become important issues.

Second, variability can also have implications for the
way that results are reported by anatomists and
interpreted by other researchers. For example, given very
variable connection densities, no single tracer injection is
likely to produce a very `typical’ pattern of labelling in
the rest of the cortex and all individual results are likely
to depart substantially from the average or most
representative case. This presents challenges for those
using connection information for data analytic studies
(e.g. Young 1993; Scannell 1997; Stephan, Zilles & Ko« tter,
this issue) or synthetic modelling studies (e.g. Ko« tter &
Sommer, this issue).

Third, individual di¡erences in connection densities
may have great functional importance. For example, they
may have a causal role in shaping individual di¡erences
in behaviour. However, to our knowledge, no attempt has
yet been made to untangle the contributions of between-
individual variability from within-individual variability.
Variability in the results of connection tracing experi-
ments in di¡erent animals will have several sources.
Sources include within-animal factors, which would be
present even if the same experiment could be repeated
on the same animal (e.g. experimental error, within-area
heterogeneity in projection patterns), and factors that
re£ect systematic di¡erences between animals (e.g. inter-
animal di¡erences in connectivity). In the study of
MacNeil et al. (1997), a single tracer substance was
deposited at a single location within each single animal.
However, repeated measures within a subject are
necessary to estimate within-individual variability.
Ideally, such measures should be made with tracers that

possess virtually identical uptake, transport and visibility
characteristics. While MacNeil et al. made e¡orts the
minimize variability in the spatial extent of tracer
deposits (e.g. by making large deposits to avoid labelling
only certain subcompartments of MS), in the absence of
repeated measures, their results cannot distinguish
between-individual variability from within-individual
variability. Therefore the magnitude of between-
individual di¡erences is unclear.

To help resolve this situation, for the rest of this paper
we make a strict distinction between within-individual
and inter-individual cases.`Within-individual’ refers to the
results that would be obtained if repeated injections were
made in the same cortical area of the same individual.
Within-individual variability will be due to random
experimental error and to local di¡erences in connec-
tivity or tracer uptake within a cortical area.`Inter-indivi-
dual’ refers to the results that would be obtained if single
injections were made in the same cortical area of di¡erent
individuals. Inter-individual variability will be due to
systematic di¡erences between individuals plus within-
individual variability. The di¡erence between inter- and
within-individual variability should let us estimate the
proportion of variance that is due to within-animal
factors and the proportion of variance that is due to
between-animal factors.

Fourth, the distribution of connection densities may
provide important insights into the organization of cortico-
cortical and thalamocortical connections.We illustrate this
point with a simplistic, and almost certainly incorrect,
model. The model makes the following assumptions:
(i) there are a very large number of neurons in area A;
(ii)each neuron has a small and ¢xed probability of
projecting to area B; (iii) neurons in area A project to area
B independently of each other; (iv) the probability of a
neuron projecting from A to B is equal across all of area A
and area B; (v) we make identical tracer injections in
di¡erent individuals.

The model that we have just outlined describes a
Poisson process. If it were true, we would expect the
distribution of connection densities for any particular
connection to be given by equation (1). Here, · is the
mean number of labelled neurons in area A following a
tracer injection in area B, and p(r) is the probability of
¢nding the number, r, of labelled neurons in area A.

p(r) ˆ ·re¡·

r!
. (1)

For all but the weakest connections, the model predicts
normally distributed connection densities, where the stan-
dard deviation is equal to the square root of ·. Deviations
from the model would show that other processes contri-
bute to variability in connections. Di¡erent models of
cortical organization predict di¡erent kinds of variability.
For example, highly variable distributions are common in
biology where local processes are Poisson, but where the
mean of the process varies from site to site or from indivi-
dual to individual (e.g. Solomon 1983; Shaw et al. 1998;
Stear et al. 1998). So, given patchy connections between
cortical areas, we would expect a highly variable distribu-
tion of connection densities (Montero 1981; Raczkowski
& Rosenquist 1983; Symonds & Rosenquist 1984; De Yoe
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& Van Essen 1985; Sherk 1986; Zeki & Shipp 1988, 1989;
Shipp & Grant 1991).

2. METHODS

(a) Quantitative connection data
We used quantitative data from published retrograde tracing

studies (Olson & Musil 1992; Musil & Olson 1988a,b, 1991) and
from our own laboratories.The published studies used the £uores-
cent retrograde tracers nuclear yellow (NY) and bisbenzimide
(Bb) to investigate the connections of medial prefrontal cortex
(PFCm), area 6m, and anterior and posterior cingulate areas
(CGa and CGp) of the cat. These studies are particularly useful
because two tracers were frequently placed in the same cortical
area of the same individual. For the rest of this paper, we assume
that NYand Bb have very similar neuronal uptake and transport
characteristics, so that they sample the same sets of connections.
This assumption lets us use these double-label studies to estimate
within-individual variability in connectionpatterns.

The data from our laboratories were obtained from injec-
tions of the retrograde tracers WGA-HRP, Fluorogold or
rhodamine-labelled latex microspheres (MacNeil et al. 1997;
Grant & Shipp 1991). The tracers were injected into either the
middle suprasylvian visual area (MacNeil et al. 1997; Grant &
Shipp 1991) or the posterolateral lateral suprasylvian visual
area (PLLS; Grant & Shipp 1991). Details of our methods are
published elsewhere (MacNeil et al. 1997; Grant & Shipp 1991).
To minimize variability due to spatial variation in the tracer
deposits (Grant & Shipp 1991; MacNeil et al. 1997), we
accepted cases only if they met all the following criteria. First,
tracer deposits exposed a reasonable area of the cortex to the
tracer substance, with the aim of avoiding di¡erential labelling
in subsets of a¡erent neurons with small or patchy terminal
arborizations (Sherk & Ombrellaro 1988; Payne et al. 1991;
Shipp & Grant 1991). Second, all cortical layers were exposed
to tracer, so avoiding di¡erential labelling in subsets of a¡erent
neurons with di¡erent laminar terminations. Third, tracer had
not spread into the white matter. And fourth, the label had not
spread into the adjacent sulcus or lateral suprasylvian areas.
For the data from the laboratory of Dr Payne, tracer deposits
were also limited to a particular region of the visual ¢eld
representation.

Retrogradely labelled neurons in cortical areas or thalamic
nuclei distant to the injection sites were counted. The propor-
tion, Si, of labelled thalamic or cortical neurons in any given
area was then calculated by dividing the number of neurons in
the area or nucleus, Ri, by the total number of counted neurons,
T, in the cortex or thalamus, respectively (equation (2)).

Si ˆ
Ri

T
(2)

This strategy eliminates any potential di¡erences in the e¤cacy
of labelling of cortical and thalamic neurons that might exist.
Possible contributing variables include di¡erences in numbers,
sizes and concentrations of terminals along cortical and
thalamic axon arbours, and di¡erences in neuronal transport
capacities. Moreover, expression of labelling densities in the
form of proportions removes the variability in connection
densities that result from absolute di¡erences in tracer uptake
between injections and emphasizes di¡erences in the pattern of
labelling. When we refer to connection strength or density
elsewhere in this paper, it is these normalized values to which we
refer. However, where possible we have repeated the analyses

with the raw, unnormalized, cell counts from our own labora-
tories. The raw data yield very similar results.

Scaling preserves relative mean connection density across
comparable injections, but causes systematic underestimation of
the variability of connections. This is because the total number
of labelled cells, T, covaries with the number of labelled cells in
each area or nucleus, Ri (equation (2)).

T ˆ R1 ‡ R2 ‡ R3 ‡ . . . . (3)

The variance of the scaled total (T/T) is, by de¢nition, zero.
The covariation between T and Ri is negligible for weak
connections but substantial for strong connections. For example,
given reasonable assumptions about the nature of the covar-
iance, standard deviations calculated from scaled data on
connections containing 50%, 25% and 10% of labelled neurons
will be 0.5, 0.7 and 0.85 of their true values. Fortunately, it is
possible to estimate and correct for this scaling bias (see ½ 3(e)).

(b) Inter- and intra-individual samples
For each corticocortical or thalamocortical connection, we

calculated the mean and standard deviation of the proportion of
retrogradely labelled neurons following tracer injections. These
sample statistics were computed from data for the same connec-
tion repeatedly measured within single published studies or
single laboratories.We did not make any composite samples using
data from di¡erent laboratories even when the same connections
were measured.This is because any di¡erences in the proportion
of cortex searched for labelled neurons or di¡erences in counting
methods could introduce errors into our calculations.

To separate the within-individual from the inter-individual
cases, we divided the results of studies where more than one
tracer was injected into an animal, into two kinds of subsamples
(table 1). The ¢rst inter-individual subsamples (table 1a) were
arranged so that they did not contain more than one measure
from any single animal.The variability of these samples provides
an estimate of inter-individual variability. The within-individual
subsamples (table 1b) consisted of paired injections in the same
area of the same hemisphere of the same animal. These samples
provide an estimate of within-individual variability.

3. RESULTS

By pooling data from our laboratories and from the
literature, we were able to obtain quantitative connection
data on the relative densities of 130 corticocortical and 54
thalamocortical connections. Quantitative connectional
neuroanatomy is extremely laborious, so sample sizes for
each connection were small. There were typically three to
¢ve tracer injections per connection, with a range of two
to ten. For the data from our laboratories we found
between 1000 and 25 000 retrogradely labelled neurons
in the thalamus or cortex per tracer injection. Because of
the small number of injections per connection, no single
connection provides enough data for a good estimate of
the distribution of densities.

(a) Great variability in individual connection
densities

The high degree of variability in the densities of indivi-
dual corticocortical and thalamocortical connections is
illustrated in ¢gure 1. Figure 1a shows cases where the
density of the same thalamocortical connection varies

Variability in connections J.W. Scannell and others 23

Phil. Trans. R. Soc. Lond. B (2000)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


over a factor of ten between di¡erent tracer injections.
Figure 1b shows cases where the density of the same corti-
cocortical connection varies over a factor of 100 between
di¡erent tracer injections. In both the thalamocortical
and corticocortical cases, the mean densities of the
stronger connections may be over 1000 times that of the
weaker connections.

(b) Relationship between mean and standard
deviation of connection density

To explore the relationship between the variability of
connections and their mean density, we performed a
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Table 1. Distinguishing between within-individual and inter-
individual variability

(The table shows how we treat data from studies that made two
tracer injections within single individuals. Here, two animals
(cat 69 and cat 89) each received two tracer injections (Bb and
NY) and the proportions of labelled neurons in thalamic nuclei
were recorded. (a) To estimate the inter-individual variability
in connection density (containing within- plus between-animal
factors), we did not average across all four injections. Rather,
we produced two subsamples in which neither animal was
represented more than once. Means and standard deviations
were then computed for the subsamples. In practice, such
subsamples contained data from two to seven animals. (b) To
estimate the intra-variability in connection density (containing
only within-animal factors), we did not average across all four
injections. Rather, we produced subsamples, each of which
contained data from only one animal. Means and standard
deviations were then computed for the subsamples. The size of
these subsamples was always two, because no more than two
distinguishable tracers (NY and Bb) were ever injected into the
same individual.)

cat
69 69 89 89

injection site
CGa CGa CGa CGa

tracer
site of label Bb NY Bb NY mean s.d.

(a) Within- and between-animal (Musil & Olson1992)
VAm/VMP 0.055 ö 0.032 ö 0.044 0.016
MD 0.029 ö 0.068 ö 0.049 0.028
LP 0.269 ö 0.260 ö 0.265 0.006
AM 0.292 ö 0.372 ö 0.332 0.057
RH 0.035 ö 0.065 ö 0.050 0.021
RE 0.136 ö 0.066 ö 0.101 0.049
CM 0.010 ö 0.039 ö 0.025 0.021
VAd 0.046 ö 0.039 ö 0.043 0.005
VMB 0.000 ö 0.000 ö 0.000 0.000

VAm/VMP ö 0.112 ö 0.117 0.115 0.004
MD ö 0.040 ö 0.118 0.079 0.055
LP ö 0.139 ö 0.291 0.215 0.107
AM ö 0.220 ö 0.152 0.186 0.048
RH ö 0.036 ö 0.031 0.034 0.004
RE ö 0.045 ö 0.040 0.043 0.004
CM ö 0.202 ö 0.040 0.121 0.115
VAd ö 0.112 ö 0.125 0.119 0.009
VMB ö 0.000 ö 0.000 0.000 0.000

(b) Within-animal (Musil & Olson 1991)
VAm/VMP 0.055 0.112 ö ö 0.084 0.040
MD 0.029 0.040 ö ö 0.035 0.008
LP 0.269 0.139 ö ö 0.204 0.092
AM 0.292 0.220 ö ö 0.256 0.051
RH 0.035 0.036 ö ö 0.036 0.001
RE 0.136 0.045 ö ö 0.091 0.064
CM 0.010 0.202 ö ö 0.106 0.136
VAd 0.046 0.112 ö ö 0.079 0.047
VMB 0.000 0.000 ö ö 0.000 0.000

VAm/VMP ö ö 0.032 0.117 0.075 0.060
MD ö ö 0.068 0.118 0.093 0.035
LP ö ö 0.260 0.291 0.276 0.022
AM ö ö 0.372 0.152 0.262 0.156
RH ö ö 0.065 0.031 0.048 0.024
RE ö ö 0.066 0.040 0.053 0.018
CM ö ö 0.039 0.040 0.039 0.000
VAd ö ö 0.039 0.125 0.082 0.061
VMB ö ö 0.000 0.000 0.000 0.000

(a)
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Figure 1. Typical examples of variability in extrinsic
thalamocortical (a), and corticocortical (b), connection
density. The vertical axis shows the log of the proportion of
labelled neurons in an a¡erent area or nucleus following a
retrograde tracer injection. Each point represents the
proportion of total labelled cortical or thalamic neurons
following a single retrograde tracer injection in a single
individual. The mean density of the strong connections (e.g.
CGp to CGa) may be over 1000 times that of the weak
connections (e.g. PS to PMLS). There is also great variability
in the proportion of labelled neurons for the same connection
across di¡erent tracer injections. For example, the proportion
of labelled cortical neurons in cortical area PS following
injections in PMLS, and the proportion of labelled neurons in
cortical area CGa following injections in PFCm, vary over
100-fold (a). Similarly, the proportion of labelled thalamic
neurons in RH and MD following injections in CGa varies
over tenfold (b).
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preliminary regression analysis of standard deviation
versus mean for thalamocortical and corticocortical
connections. Densities vary over several orders of magni-
tude, so we used the logs of the mean and standard devia-
tion. We distinguished within-individual statistics (two
distinguishable tracer injections in the same area in the
same animal) from inter-individual statistics (no more
than one tracer deposit in any animal). Figure 2
compares thalamic and cortical data. Figure 3 compares
inter- and within-individual data.

Because of possible sampling bias and scaling bias in
computing standard deviation (see ½ 3(e)), the uncor-
rected regression analyses in ¢gures 2 and 3 must be
treated with caution. However, the ¢gures show several
robust features of the data that we consider brie£y here
and return to later.

First, for stronger connections (more than 1% of
labelled neurons, ¢gure 2), thalamocortical variability is
lower than corticocortical variability. The regressions
suggest, however, that the relationship may be reversed
for very weak connections where thalamic projections
appear more variable. Second, for both corticocortical
and thalamocortical connections, inter-individual stan-
dard deviation is moderately higher (roughly 0.3 log
units for the uncorrected data) than within-individual
standard deviation across a wide range of connection
densities (¢gure 3).

Third, and importantly, log standard deviation connec-
tion density is roughly proportional to log mean connec-
tion density over several orders of magnitude (¢gures 2
and 3, table 2). The lines superimposed on the raw data
points represent the relationships between mean and
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Figure 2. Relationship between mean and standard deviation of thalamocortical and corticocortical connection density. The
vertical axes show log standard deviation of the proportion of labelled neurons. The horizontal axes show log mean proportion of
labelled neurons. (a) and (c) show raw data from inter- and within-individual cases, respectively. Each point was computed from
two or more tracer injections. The within-individual data (c) is more scattered because sample sizes were never greater than two.
The solid and dotted lines show the relationship between mean and standard deviation for samples from an exponential and a
Poisson distribution, respectively. As connection data were scaled (see } 2), we also scaled the data used to compute the lines for
the exponential and Poisson. The scaling process reduces estimates of variability for strong connections. (b) and (d) show
regression lines ( § 1 s.e.) for inter-individual and for within-individual data, respectively. The gradient of the regression for
corticocortical data is higher than that for thalamocortical data (see also table 2). Strong corticocortical connections tend to be
more variable in density than strong thalamocortical connections, although the situation may be reversed for weak connections.
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standard deviation that would be expected from a simple
Poisson process and from an exponential distribution
(¢gures 2a,c and 3a,c). Both of these theoretical lines were
computed taking account of scaling bias, and this
explains why their slopes decline for strong connections.
It is clear that the Poisson model predicts unrealistically
low connection variability. In contrast, the line repre-
senting samples drawn from an exponential distribution
provides a good description of the relationship between
variability and mean.

(c) Relationship between mean and median
connection density

The relationship between mean and standard deviation
connection density does not look like that predicted by a
Poisson process, but does resemble an exponential.
However, ¢gures 2 and 3 could, in principle, show that

connection densities follow a normal distribution in which
the standard deviation scales in proportion to the mean.

Normally distributed data are not skewed. A robust
measure of skew, particularly when sample size is small, is
the ratio of median to mean. This ratio will be centred on
one for samples drawn from a normal distribution. It will
be less than one for positively skewed data and more than
one for negatively skewed data.

To explore the samples of connection data, we
calculated the ratio of sample median to sample mean for
all sample sizes greater than two (the minimum sample
size necessary for mean and median to be di¡erent). This
included the vast majority of inter-individual samples but,
unfortunately, excluded all within-individual samples.
Figure 4 shows that, with the exception of one data point
(representing data from a single study of thalamocortical
connections, see ½ 4), the median to mean ratio is
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Figure 3. Relationship between mean and standard deviation of connection density for within-individual and inter-individual
cases. The vertical axes show log standard deviation of the proportion of labelled neurons. The horizontal axes show log mean
proportion of labelled neurons. (a) and (c) show raw thalamic and cortical data, respectively. Each point was computed from
two or more tracer injections within an individual study. The intra-individual data (a) and (c) are more scattered because sample
sizes were never greater than two. The solid and dotted lines show the relationship between mean and standard deviation for
samples from an exponential and a Poisson distribution, respectively. As connection data were scaled (see } 2), we also scaled the
data used to compute the lines for the exponential and Poisson. The scaling process reduces estimates of variability for strong
connections. (b) and (d) show regression lines ( § 1 s.e.) for inter- and for within-individual data, respectively. Within-individual
data show a similar slope to inter-individual data in both (b) and (d) but has a lower intercept (see also table 2), indicating
proportionately lower variability.
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signi¢cantly less than one, and is closer to 0.7. Therefore,
the distribution of connection densities is highly non-
normal and strongly positively skewed.

(d) The distribution of connection densities
The results so far force us to reject two candidate distri-

butions that could, in principle, describe the spread of
corticocortical and thalamocortical connection densities.
First, the ratio of mean to median shows that the distribu-
tion is highly non-normal (with the possible exception of
thalamic projections to MS, see ½ 4). Second, variability is
too high to be accounted for by a simple Poisson model.

One frequency distribution that resembles our data in
terms of skew is the geometrical distribution. When the
mean number of events (e.g. labelled neurons) is large, as
in all but the weakest of anatomical connections, the
geometric distribution approximates its continuous
analogue, the exponential or Boltzmann distribution. The
exponential distribution is de¢ned in equation (4), where
the probability of obtaining a score x is p(x) and · is the
mean of the distribution.

p(x) ˆ 1
·

e¡x=·. (4)

Figure 4 shows the ratio of median to mean for samples
drawn from an exponential distribution for a range of
sample sizes (dashed line in ¢gure 4). Although the
smaller experimental samples are more skewed than
would be expected for an exponential, it is clear that the
median to mean ratio of the connection data is much
closer to an exponential than a normal distribution.

For the next section of this paper and in Appendix A,
we adopt the exponential distribution as a simple `working
model’ of the frequency distribution of connection

densities. However, we qualify our use of the exponential
for several reasons. First, the exponential approximation
is not a perfect description of the variability that we ¢nd.
This is shown by the fact that the slopes and intercepts of
the regressions between standard deviation and mean are
not one and zero, the values predicted for an exponential
(table 2). As a result, the exponential underestimates
variability for the very weak connections and overesti-
mates variability for very strong connections. Second,
¢gure 4 shows that the connection data appear even more
skewed than predicted by an exponential distribution.
This feature would be expected under a geometrical
distribution (of which the exponential is the continuous
analogue) for weak connections where ·2 is not much
larger than ·, the mean number of labelled neurons.
These factors lead us to suggest that a more general class
of frequency distributions known as the negative binomial
(of which the geometrical distribution is a special case)
probably provides a better description of the distribution
of connection densities (see } 4). Negative binomials are
attractive, as they arise under hierarchical generative
models (Solomon 1983; Casella & Berger 1990), which
might apply if a range of random processes are involved in
the measurement of connection strengths with connection
probabilities drawn from a continuous distribution. This
would occur, for example, in a patchy cortical area
containing domains that varied in their connection densi-
ties. While attractive, we do not develop a negative bino-
mial model here for two reasons. First, it is not clear that
the negative binomial distribution o¡ers a su¤cient
improvement, or substantially alters our results or conclu-
sions. Second, a large amount of quantitative data are
required to distinguish between competing models. Such
data should come from a purpose-designed study carried
out with consistent methods in a single laboratory, and is
beyond the quality of the data that are currently available.

The implications of an exponential distribution of
connection densities are as follows. First, methods of
inferential statistics based on the assumption of a normal
distribution simply do not apply. Second, connection data
are highly skewed and highly variable so rather large
amounts of data are necessary for con¢dent estimates of
connection density and/or variability (see Appendix A,
and ¢gures 8 and 9). Third, and more deceptively, the
standard measure of variability, sample standard
deviation, systematically underestimates population stan-
dard deviation when given small samples drawn from
highly skewed distributions such as the exponential
(¢gure 8b). This bias depends on sample size, so estimates
of variability based on small samples will be lower than
estimates based on large samples. We consider sampling
bias below and in greater detail in Appendix A (see also
¢gure 8b).

(e) Sampling bias and scaling bias
We performed a Monte Carlo simulation to assess the

e¡ect of sampling bias on the standard deviation of
samples drawn from exponentially distributed data. We
took 10 000 samples in a range of sample sizes (from two
to ten) from an exponentially distributed population of
random numbers with a population mean of one and
standard deviation of one. Sampling bias in standard
deviation was therefore equal to the mean value of sample
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Table 2. Coe¤cients for linear regression between log standard
deviation (s) and log mean (·x) given by the equation logs
ˆ klog·x ‡ c, where k is the slope and c is the intercept

(The table also shows the standard error in the slope and
intercept estimates, and the goodness of ¢t, R 2, of the regression.
The expected standard deviation for any mean density is given
by s ˆ log 10(c‡k·x). (a) Results of regressions of raw data in
which estimates of standard deviation have not been corrected
for sampling bias or scaling bias; (b) results of regressions of
corrected data where estimates of standard deviation have been
corrected for sampling bias and scaling bias.)

k s.e. c s.e. R2

(a) uncorrected
within thalamus 0.64 0.06 ¡1.00 0.10 0.45
between + within

thalamus
0.65 0.03 ¡0.69 0.05 0.87

within cortex 0.77 0.06 ¡0.65 0.11 0.61
between + within

cortex
0.85 0.03 ¡0.32 0.05 0.87

(b) corrected
within thalamus 0.68 0.10 ¡0.63 0.10 0.53
between + within

thalamus
0.73 0.02 ¡0.46 0.05 0.90

within cortex 0.84 0.05 ¡0.35 0.10 0.66
between + within

cortex
0.90 0.03 ¡0.09 0.05 0.89
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standard deviation for each sample size (see Appendix A,
solid line in ¢gure 8b).

Sampling bias was substantial for small samples. For
example, with sample sizes of two, three and four, sample
standard deviation was only 0.70, 0.80 and 0.84 times the
true population standard deviation. We corrected the
measures of variability computed from anatomical data
by dividing the sample standard deviation by sampling
bias for the appropriate sample size.

Scaling measures of connection density, by dividing cell
counts for individual connections by the total count, also
reduces estimates of the variability of connections. The
scaling bias is particularly severe for strong connections
because these covary strongly with the total count.
Scaling bias is intuitively understandable if one thinks of
a very strong connection that contains nearly all the
labelled neurons. For such a connection, the proportion of
total labelled neurons will always be close to one, what-
ever the absolute variations in its density. Therefore, this
connection will appear to have a very low level of varia-
bility across cases.

Scaling bias in estimates of variability occurs whenever
individual measures are divided by a summed measure
with which they covary, but the details of the bias vary with
the nature of the covariance between individual measures
and the total.To obtain an accurate estimate of scaling bias
in our data, we performed a Monte Carlo simulation that
used distributions that were very similar to those found in
the experimental data. The model is outlined in equation
(5). Here Sc and Rc are random variables that represent,

respectively, the proportion and number of neurons
labelled via connection c. In line with the anatomical data,
the distribution of Rc is exponential. Ro represents the
number of neurons labelled by all the other connections. As
Ro is the consequence of adding a large number of exponen-
tially distributed random variables (i.e. the other connec-
tions), we assume that it is normally distributed.

Sc ˆ
Rc

Rc ‡ Ro
. (5)

We ran our simulations with the mean total number of
labelled neurons T ˆRc + Ro ˆ10 000. Therefore, the
mean of Ro ˆ10 0007Rc. We found that scaling bias is
only weakly dependent on total neuron number. The
value of T that we have chosen produces results that are
representative for the range of values of T (roughly 1000
to 20 000 labelled neurons) present in the data.

We took a large number of large samples in a range of
connection strengths (mean Rc was from 1 to 8000 labelled
neurons, and mean Ro was from 9999 to 2000 labelled
neurons) to represent cell counts for connection c and all the
other connections.We then computed Sc (equation (6)) and
the standard deviation of Sc for each mean connection
strength.The results of the simulation (and of an equivalent
simulation for Poisson data) are shown by the lines in ¢gures
2a,c and 3a,c. In the absence of scaling bias, these lines
would be straight, with slopes of 1 and 0.5, respectively.
Equivalent lines for the Poisson and exponential, correcting
for scaling bias, appear in ¢gures 5a,c and 6a,c.
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Figure 4. The median proportion of labelled neurons is systematically less than the mean proportion of labelled neurons. The
vertical axis shows the ratio of median to mean connection density; a robust measure of skew. The horizontal axis shows sample
size (the number of tracer injections; one per animal) from which the median to mean ratio for each connection was computed.
Error bars show the 95% con¢dence intervals of the mean ratio of sample median to sample mean. The dotted line is the
expected median to mean ratio for samples drawn from a normal distribution. The dashed and dotted line is the expected
median to mean ratio for samples drawn from an exponential distribution, which tends towards loge2 (dashed line) when sample
size is large. In general, the empirically derived skew is closer to that expected by sampling from an exponential than from a
normal distribution. In fact, the data are even more skewed than an exponential distribution (see text). One data point, marked
by an asterisk, is an obvious outlier. These data, which appear normally distributed, are from ten tracer injections in a single
study of the thalamic projections to MS cortex (see } 4).
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A comparison of ¢gures 2 and 3 with ¢gures 5 and 6
shows that scaling bias is substantial for strong connections.
For connections that account for 25% of the total number
of labelled neurons, scaling bias will reduce standard devia-
tion estimates to roughly 0.66 of their true value. We
computed a correction factor corresponding to the di¡er-
ence between the log standard deviation of scaling-biased
exponential data (¢gures 2 and 3) and the log standard
deviation of unbiased exponential data (¢gures 5 and 6).We
then added this factor to the standard deviation estimates of
the connection data (¢gures 5 and 6).

(f) Comparison of corticocortical
and thalamocortical variability, and of intra-

and inter-individual variability: corrected data
The data in ¢gures 2 and 3 are likely to su¡er from

scaling bias and sampling bias, which both tend to reduce

the standard deviation. Both biases must be corrected to
provide good estimates of the true relationship between
mean and standard deviation connection density. This is
necessary to reveal di¡erences in corticocortical and
thalamocortical connections, and to assess quantitative
di¡erences in within- and inter-individual variability.
Figures 5 and 6 show the relationships between mean and
standard deviation after appropriate correction. The
results here are qualitatively similar, but quantitatively
di¡erent, to ¢gures 2 and 3.

First, strong corticocortical connections are more vari-
able than strong thalamocortical connections (¢gure 5).
For example, corticocortical connections with around
10% of labelled neurons tend to have a standard
deviation 1.5^2 times greater than equivalent density
thalamic connections. This is true for both inter- and
within-individual cases. For connections that include
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Figure 5. Relationship between the mean and standard deviation of thalamocortical and corticocortical connection density when
sampling bias and scaling bias in standard deviation are corrected. The vertical axes show the log of the standard deviation of
the proportion of labelled neurons. The horizontal axes show the log of the mean proportion of labelled neurons. (a) and (c) show
corrected data points for inter- and within-individual cases, respectively. Each point was computed from two or more tracer
injections within an individual study. The solid and dotted lines show the relationship between mean and standard deviation for
samples drawn from exponential and Poisson distributions, respectively. (b) and (d) show regression lines ( § 1 s.e.) for inter- and
for within-individual data, respectively. The gradient of the regression for corticocortical data appears higher than that for
thalamocortical data (see also table 2). Strong corticocortical connections tend to be more variable in density than strong
thalamocortical connections, although the situation may be reversed for weak connections.
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around 1% of labelled cells, thalamocortical and cortico-
cortical connections have very similar variability. For
weak connections (0.1% of labelled cells) inter-individual
thalamic connectivity may be more variable than cortical
connectivity, but within-individual variability is similar
for thalamus and cortex.

Second, ¢gure 6 con¢rms that inter-individual
variability is greater than within-individual variability.
However, the di¡erences with corrected data (¢gure 6) are
smaller than the estimates based on uncorrected data
(¢gure 3). For example, in the region of the corticocortical
regressions (¢gure 6d ) where the lines are signi¢cantly
di¡erent (roughly corresponding connection densities of
0.1% and upwards), the ratio of standard deviation of
within- to inter-individual cases is only in the range of
1:1.3 to 1:1.5. Similarly, in the region of the thalamocortical
regressions (¢gure 6b) where the lines are signi¢cantly

di¡erent (roughly corresponding to connection densities of
0.1% and above), the ratio of standard deviation of within-
to inter-individual ranges from 1:1.3 to 1:1.6.

Variance is the square of standard deviation, so stan-
dard deviation ratios can be converted into variance
ratios. As the ratio of within- to inter-individual variance
ranges from 1:1.7 to 1:2.6, the ratio of within-individual
variance to true between-individual variance (i.e. inter-
individual minus within-individual variance), ranges from
1:0.7 to 1:1.6. These values show that both true within-
individual factors (local heterogeneity in tracer uptake,
experimental error) and true between-individual factors
(systematic di¡erences between animals) contribute
similar amounts of variance to the results of most connec-
tion tracing experiments.

Third, as with the uncorrected data, the exponential
provides a good description of the data, while the Poisson

30 J.W. Scannell and others Variability in connections

Phil.Trans. R. Soc. Lond. B (2000)

0

–0.5

–1

–1.5

–2

–2.5

–3

–3.5

–4

lo
g 

st
d 

de
ns

it
y

(a)
inter-indiv.
within-indiv.
exponential
Poisson

inter-indiv.
within-indiv.

inter-indiv.
within-indiv.

inter-indiv.
within-indiv.

exponential
Poisson

0

–0.5

–1

–1.5

–2

–2.5

–3

–3.5

–4

lo
g 

st
d 

de
ns

it
y

(c)

–4 –3 –2

log mean density

–1 0

(b)

(d )

–4 –3 –2

log mean density

–1 0

Thalamic data Thalamic regression

Cortical data Cortical regression

Figure 6. Relationship between the mean and standard deviation of connection density for inter-individual and intra-individual
cases when sampling bias and scaling bias in standard deviation are corrected. The vertical axes show the log of the standard
deviation of the proportion of labelled neurons. The horizontal axes show the log of the mean proportion of labelled neurons.
(a) and (c) show corrected data points for thalamic and cortical data, respectively. Each point was computed from two or more
tracer injections within an individual study. The solid and dotted lines show the relationship between mean and standard
deviation for samples drawn from exponential and Poisson distributions, respectively. (b) and (d) show regression lines ( § 1 s.e.)
for thalamic and for cortical data, respectively. Within-individual data shows a similar slope to inter-individual data in both
(b) and (d ) but has a lower intercept (see also table 2). The di¡erence in intercept suggests that in both thalamocortical and
corticocortical cases, the standard deviation of within-individual samples is roughly 1.5 times lower than the standard deviation
of intra-individual samples with a comparable mean.
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substantially underestimates variability in the density of
connections.

4. DISCUSSION

(a) Consequences of variability for neuroanatomical
studies

Our results have implications for interpreting the
current neuroanatomical literature, for the design of
connection tracing experiments and for the way
connection data are reported. The ¢rst and most general
implication is that caution is required when interpreting
connection densities reported in studies with small sample
sizes. We suggest that sample sizes of around ten are
necessary for reasonable estimates of the density of
connections. Our experience indicates that the majority
of published studies on corticocortical and thalamo-
cortical connections in cats and macaques use samples
that are substantially smaller than ten. However, even
with sample sizes of ten or more, only very large di¡er-
ences in mean connection density will prove `signi¢cantly’
di¡erent on a reliable basis (see Appendix A).

Second, quantitative connection tracing studies have
tended to report scaled data, as such data make it easier

to compare between cases. However, many statistics
computed directly from scaled data will be misleading.
Therefore, scaled data should be supplied with an indica-
tion of the total number of labelled cells, so that they may
be easily `unscaled’.

Third, as connection densities are highly variable,
presenting any single individual’s results as representative
is di¤cult. This is because most individuals depart consid-
erably from the average pattern and no single individual
can be very similar to all the others. To re£ect this
genuine aspect of connection data, the distribution of
connection densities should be quanti¢ed (Cherniak
1990), reported and represented in future attempts at
collation and modelling (MacNeil et al. 1997).

(b) Thalamic projections to PMLS
Both corticocortical and thalamocortical connection

data typically show a skewed distribution of densities in
which the median is substantially lower than the mean.
The only obvious exceptions are the thalamocortical
projections to MS from ten tracer deposits made in the
laboratory of Dr Payne (asterisk in ¢gure 4). The densities
of these connections are roughly normally distributed,
and show very low variability and very little skew.
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Figure 7. A model to account for the experimentally derived distribution of connection densities. (a) shows a surface view of a
small region of a hypothetical cortical area. The area has striped variations in connection density with another structure. Light
shades show weak connections and dark shades show strong connections. Possible locations of small tracer injections are marked by
asterisks. (b) illustrates the frequency distribution of label density in a distant structure that would result from small injections
made at the locations shown in (a). Each small curve represents a Poisson distribution of connection densities, that would occur if it
were possible to repeatedly inject exactly the same location. (c) shows the frequency distribution that would result from a series of
small injections at randomly selected asterisks (a). The solid line is the sum of the individual Poisson distributions shown in
(b). The dotted line is an exponential with the same mean density as the solid line. It would be very di¤cult to distinguish between
the exponential (dotted line) and the distribution based on random injections (solid line) on the basis of small samples. In fact, if
the distribution of local mean densities within an area was gamma distributed, the combined distribution would be a negative bino-
mial (see } 4). (d) shows the frequency distribution of label density in the distant structure from a large injection that covered all the
asterisks. By averaging across all the domains, the distribution of densities from large injections will be very close to a normal.

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


Several factors could account for these `exceptional’ data.
The ¢rst, and least interesting, is that they represent a
statistical quirk. It is possible that they di¡er from the
other data just by chance. This would not be altogether
surprising, as we have computed the median to mean
ratios for a large number of samples.

Second, the di¡erence could be due to the fact the
study in Dr Payne’s laboratory took several steps to
reduce random variability due to the spatial characteris-
tics of tracer deposits (MacNeil et al. 1997). These are
outlined in the } 2, but in addition to the usual precautions:
(i) tracer deposits were limited to a particular region of
the visual ¢eld representation; (ii) tracer deposits covered
a reasonable area of the cortex, so avoiding di¡erential
labelling in subsets of a¡erent neurons with small or
patchy terminal arborizations (Sherk & Ombrellaro 1988;
Payne et al. 1991; Shipp & Grant 1991); (iii) all cortical
layers were exposed to tracer, so avoiding di¡erential
labelling in subsets of a¡erent neurons with di¡erent
laminar terminations. These factors may be very impor-
tant if the highly variable distribution of connection
densities is due to local heterogeneity in connectivity (see
below and ¢gure 7). For patchy connection patterns,
small localized deposits could produce a near exponential
distribution of densities, while larger deposits could yield
a more normal distribution (see ¢gure 7 and below). This
is because the larger deposits could simultaneously span
the di¡erent connectional subcompartments.

We note that the corticocortical data from Dr Payne’s
laboratory, which are based on the same set of tracer
injections as the èxceptional’ thalamocortical data, bear a
close resemblance to the other corticocortical data. These
facts could be explained if the corticocortical projections
to MS cortex are more patchy (Montero 1981; Shipp &
Grant 1991), or have coarser patches, than the thalamo-
cortical projections (see Sherk 1986).

Third, the MS data raise the possibility of a di¡erence
in the thalamocortical connectivity of MS cortex and the
other areas for which we have data. MS is a relatively
low-order visual area, while the others (medial area 6,
cingulate and prefrontal cortex) are all higher-order
areas. The variability in the thalamic connections of these
higher areas is more similar to most of the corticocortical
connections than to the thalamic data from MS. This
observation has several possible implications. First,
thalamic projections to the higher areas may be more
patchy than thalamic projections to the lower areas.
Second, epigenetic factors, which may contribute to a high
degree of variability in corticocortical connections
(MacNeil et al. 1997), could play a greater role in shaping
the thalamocortical connections of higher-order cortical
areas.

(c) Interpreting the distribution
The connections of MS, considered with the near expo-

nential distributions that are observed in some other
biological systems, may provide a clue to the generation
of variability in the measurement of neuroanatomical
projections. Highly variable distributions of the kind we
observe in connection data are commonly found in the
distribution of parasites in populations (Shaw et al. 1998;
Stear et al. 1998). In these cases, it can be assumed that for
any given individual, parasites follow a Poisson distribu-

tion. If all individuals were the same, this would result in
a Poisson distribution of parasites across the population.
However, the distribution of parasites appears much more
clumped than the Poisson predicts. This pattern is
obtained because parasites spread between nearby hosts,
so that neighbouring animals have similar infection rates
(a feature known as àggregation’).

If instead of a simple Poisson process we have a distri-
bution of Poisson processes with di¡erent mean rates,
then this can lead to distributions very much like the one
we observe in the connection data. This potentially unin-
tuitive argument is shown much more simply in ¢gure 7.
Imagine that instead of host animals we have single
tracer injections; instead of parasites we have labelled
cells; and instead of àggregation’ we have `blobs’ or
`stripes’ in the cortex (Montero 1981; Symonds &
Rosenquist 1984; Sherk 1986; Shipp & Grant 1991).
Provided that cortical areas routinely contain patches
with very di¡erent patterns of extrinsic connections, it is
straightforward to understand how the distribution of
densities that is observed with small injections (made into
one stripe or patch), and assayed with small samples,
resembles an exponential. If deposits were consistently
made into the same stripe or patch in di¡erent experi-
ments then we would observe a Poisson distribution.
Alternatively, large tracer deposits that consistently cover
an entire `wavelength’ of stripe or patch would generate a
normal distribution of densities. These inferences have an
obvious resonance with observed di¡erences in variability
in the corticocortical and thalamocortical projections to
MS cortex.

(d) Measuring the distribution
A challenging programme of empirical work is needed

to put quantitative details on the simple model that we
propose to account for variability. Until this is done, it
will be very di¤cult to interpret within- and inter-
individual di¡erences, or di¡erences in the distributions
of connection densities obtained by injections in di¡erent
areas. First, it is necessary to examine variations in
connection density with the size and laminar distribution
of tracer deposits, by making two or more deposits of
distinguishable tracers nearby in the same cortical area of
the same individual. Second, it will be necessary to
determine the natures of within- and inter-individual
variability. It requires injections of three or more distin-
guishable tracers into the same cortical area of a reason-
able number individuals. A minimum of three tracers is
required to provide information on the shape of the
within-individual distribution. It is also necessary to
repeat the procedures in several cortical areas to assess
the variability in the nature of connectivity patterns from
one region of cortex to another.

In conclusion, high variability appears to be a feature
of all corticocortical and many thalamocortical connec-
tions. Variability presents a challenge for empirical
neuroanatomy, for attempts to collate and analyse
connection data, and for modelling studies. Connectional
variability may be important for individual di¡erences in
behaviour, and can give us an insight into the local archi-
tecture of cortical areas. However, given the laborious
nature of quantitative connection tracing, it is unlikely
that variability will be properly addressed without
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histological and image-processing methods that allow
labelled neurons to be counted automatically.
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APPENDIX A. PRACTICAL CONSEQUENCES OF A

NEAR EXPONENTIAL DISTRIBUTION OF CONNECTION

DENSITIES FOR EMPIRICAL NEUROANATOMY

In this appendix, we consider some of the important
consequences of a near exponential distribution of
connection densities for experimental design in connec-
tional neuroanatomy. As the exponential is the most vari-
able possible continuous distribution given non-negative
values, the estimates presented in this section are likely to
represent a relatively pessimistic, yet realistic, picture of
the problems of sampling and statistical inference.

We provide three practical guides to data that are expo-
nentially distributed. First, it is easy to generate random
exponentially distributed data from which to calculate
statistics (e.g. mean, median, standard deviation, etc.) and
perform simulations. Numbers from an exponentially
distributed population, xe, with a mean and standard
deviation of m may be made by generating uniform
random numbers, x, between 0 and 1, and substituting
them into the following equation (equation (A1)).

xe ˆ ¡· ln (x). (A1)

Second, for simple guidance on the relationships between
con¢dence intervals, bias, and sample size, we provide
two graphs (¢gures 8 and 9). These were produced using
equation (3) to generate 10 000 samples in each sample
size. The graphs show the 95% con¢dence intervals, 70%
con¢dence intervals (analogous to standard error),
median estimates, and bias for the mean (¢gure 8a) and
standard deviation (¢gure 8b), for sample sizes ranging
from two to 20. We note that the bias in standard devia-
tion (solid line in ¢gure 8b) is worse for small samples.
Also, con¢dence intervals are asymmetrical, unlike the
normally distributed case. Figure 8 illustrates the fact that
errors in estimates of connection strengths based on small
samples can be very large. For example, the 95% con¢-
dence interval of the mean ranges over a factor of ten
when the sample size is ¢ve. Estimates of variability
based on small samples also show systematic bias.

Third, we provide an indication of the chance of
correctly identifying di¡erences in the mean values of two
populations from which samples of connections are taken.
Figure 9 shows the probability that pairs of samples from
populations with di¡erent mean densities can be correctly
identi¢ed as `signi¢cantly di¡erent’ at the p50.05 level.
The table was computed by sampling from exponentially
distributed populations with known mean values. We
judged pairs of samples as `signi¢cantly di¡erent’ if they
had completely non-overlapping 85% con¢dence intervals.
We chose 85% con¢dence intervals, because pairs of
samples drawn from exponential populations with the
same mean have non-overlapping 85% con¢dence inter-
vals just less than 5% of the time. Therefore, this
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Figure 8. Sampling from an exponentially distributed
population. The ¢gure provides a guide to sampling bias, and
the con¢dence of estimates of mean (a) and standard deviation
(b) when sampling from an exponential distribution. The
exponential distribution provides a better description of
connection data than the normal distribution. The
relationships are independent of mean connection density, so
are expressed as a ratio of the relevant statistic (e.g. sample
mean) to the true parameter (e.g. population mean).
(a) shows the mean sample mean (solid line), median sample
mean, 70% con¢dence intervals (analogous to standard error)
and 95% con¢dence intervals for a range of sample sizes.
Sample mean is an unbiased estimate of population mean
( y-value of the solid line ˆ 1), but the con¢dence intervals are
wide. (b) shows mean sample standard deviation (solid line),
the median sample standard deviation, the 70% con¢dence
intervals for population standard deviation and the 95%
con¢dence intervals. In contrast to sample mean, sample
standard deviation is less than one, so systematically
underestimates population standard deviation. This bias is
particularly severe for small sample sizes.
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corresponds to the conventionally accepted signi¢cance
level of a type I error rate of p50.05 for a two-tailed test.
Figure 9 shows that di¡erences in population mean are
very di¤cult to reliably detect when sampling from an
exponential distribution. In other words, type II error
rates tend to be high. Given a sample size of four, which is
not unusual in connection tracing experiments, and a ratio
in mean population connection density of 4:1, we would
only get a `signi¢cant’ di¡erence around 40% of the time.
This indicates that typical connection tracing experiments
may reliably distinguish only very large di¡erences in the
mean density of connections.
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as signi¢cantly greater than sample 1 (at p50.05). The
horizontal axis shows the ratio of the means of population 2
and population 1. A ratio of 1:1 indicates identical population
means, a ratio of 1:5 indicates a factor of ¢ve di¡erence in
population mean. The curves show the relationship between
statistical power and e¡ect size for sample sizes of two (dots
and dashes), four (dots), ten (solid line) and 20 (dashes). We
judged pairs of samples as `signi¢cantly di¡erent’ if they had
completely non-overlapping 85% con¢dence intervals. We
chose 85% con¢dence intervals, because pairs of samples
drawn from exponential populations with the same mean have
non-overlapping 85% con¢dence intervals just less than 5% of
the time. Therefore, this corresponds to the conventionally
accepted signi¢cance level of a type I error rate of p50.05 for
a two-tailed test. The ¢gure shows that for reasonable sample
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di¡erent connection densities to be reliably identi¢ed as
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